Senin, 21 Maret 2011

Materi Semester II


1.Keseimbangan Benda Tegar : Titik Berat

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.
Benda akan seimbang jika pas diletakkan di titik beratnya
Benda akan seimbang jika pas diletakkan di titik beratnya
Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.
Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.
Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya. Perhatikan gambar berikut ini.
seorang yang meloncat ke air dengan berputar
seorang yang meloncat ke air dengan berputar
Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.
Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.
Orang ini berada dalam keseimbangan
Orang ini berada dalam keseimbangan
Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.

2.Momen inersia

Momen inersia (Satuan SI : kg m2) adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Besaran ini adalah analog rotasi daripada massa. Momen inersia berperan dalam dinamika rotasi seperti massa dalam dinamika dasar, dan menentukan hubungan antara momentum sudut dan kecepatan sudut, momen gaya dan percepatan sudut, dan beberapa besaran lain. Meskipun pembahasan skalar terhadap momen inersia, pembahasan menggunakan pendekatan tensor memungkinkan analisis sistem yang lebih rumit seperti gerakan giroskopik.
Lambang I dan kadang-kadang juga J biasanya digunakan untuk merujuk kepada momen inersia.
Konsep ini diperkenalkan oleh Euler dalam bukunya a Theoria motus corporum solidorum seu rigidorum pada tahun 1730.[1] Dalam buku tersebut, dia mengupas momen inersia dan banyak konsep terkait.

Definisi skalar

Definisi sederhana momen inersia (terhadap sumbu rotasi tertentu) dari sembarang objek, baik massa titik atau struktur tiga dimensi, diberikan oleh rumus:
I = \int r^2 \,dm\,\!
di mana m adalah massa dan r adalah jarak tegak lurus terhadap sumbu rotasi.

Analisis

Momen inersia (skalar) sebuah massa titik yang berputar pada sumbu yang diketahui didefinisikan oleh
I \triangleq  m r^2\,\!
Momen inersia adalah aditif. Jadi, untuk sebuah benda tegar yang terdiri atas N massa titik mi dengan jarak ri terhadap sumbu rotasi, momen inersia total sama dengan jumlah momen inersia semua massa titik:
I \triangleq  \sum_{i=1}^{N} {m_{i} r_{i}^2}\,\!
Untuk benda pejal yang dideskripsikan oleh fungsi kerapatan massa ρ(r), momen inersia terhadap sumbu tertentu dapat dihitung dengan mengintegralkan kuadrat jarak terhadap sumbu rotasi, dikalikan dengan kerapatan massa pada suatu titik di benda tersebut:
I \triangleq   \iiint_V \|\mathbf{r}\|^2 \,\rho(\mathbf{r})\,dV \!
di mana
V adalah volume yang ditempati objek
ρ adalah fungsi kerapatan spasial objek
r = (r,θ,φ), (x,y,z), atau (r,θ,z) adalah vektor (tegaklurus terhadap sumbu rotasi) antara sumbu rotasi dan titik di benda tersebut.
Diagram perhitungan momen inersia sebuah piringan. Di sini k adalah 1/2 dan \mathbf{r} adalah jari-jari yang digunakan untuk menentukan momen inersia
Berdasarkan analisis dimensi saja, momen inersia sebuah objek bukan titik haruslah mengambil bentuk:
 I = k\cdot M\cdot {R}^2 \,\!
di mana
M adalah massa
R adalah jari-jari objek dari pusat massa (dalam beberapa kasus, panjang objek yang digunakan)
k adalah konstanta tidak berdimensi yang dinamakan "konstanta inersia", yang berbeda-beda tergantung pada objek terkait.
Konstanta inersia digunakan untuk memperhitungkan perbedaan letak massa dari pusat rotasi. Contoh:
  • k = 1, cincin tipis atau silinder tipis di sekeliling pusat
  • k = 2/5, bola pejal di sekitar pusat
  • k = 1/2, silinder atau piringan pejal di sekitar pusat.

Daftar momen inersia

Momen inersia (Satuan SI : kg m2) adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Besaran ini adalah analog rotasi daripada massa.
Dibawah ini merupakan daftar momen inersia dari beberapa benda tegar yang digunakan dalam perhitungan.
Keterangan :
I adalah momen inersia benda
m adalah massa benda
L adalah panjang benda
Benda Poros Gambar Momen inersia
Batang silinder Pusat Moment of inertia rod center.png I = \frac{1}{12}\,\!mL^2
Batang silinder Ujung Moment of inertia rod end.png I = \frac{1}{3}\,\!mL^2
Silinder berongga Melalui sumbu Moment of inertia thin cylinder.png I = mR2
Silinder pejal Melalui sumbu Moment of inertia thick cylinder.png I = \frac{1}{2}\,\!mR^2
Silinder pejal Melintang sumbu Moment of inertia thick cylinder h.png I = \frac{1}{4}\,\!mR^2 + \frac{1}{12}\,\!mL^2
Bola pejal Melalui diameter Moment of inertia solid sphere.svg I = \frac{2}{5}\,\!mR^2
Bola pejal Melalui salahsatu garis singgung Moment of inertia solid sphere.svg I = \frac{7}{5}\,\!mR^2
Bola berongga Melalui diameter Moment of inertia hollow sphere.svg I = \frac{2}{3}\,\!mR^2

3.Usaha (Kerja) Dan Energi
Fisika Kelas 1 > Dinamika
267

Jika sebuah benda menempuh jarak sejauh S akibat gaya F yang bekerja pada benda tersebut maka dikatakan gaya itu melakukan usaha, dimana arah gaya F harus sejajar dengan arah jarak tempuh S.
USAHA adalah hasil kali (dot product) antara gaya den jarak yang ditempuh.

W = F S = |F| |S| cos q
q = sudut antara F dan arah gerak

Satuan usaha/energi : 1 Nm = 1 Joule = 107 erg
Dimensi usaha energi: 1W] = [El = ML2T-2
Kemampuan untuk melakukan usaha menimbulkan suatu ENERGI (TENAGA).
Energi dan usaha merupakan besaran skalar.
Beberapa jenis energi di antaranya adalah:
  1. ENERGI KINETIK (Ek)

    Ek trans = 1/2 m v2

    Ek rot = 1/2 I w2

    m = massa
    v = kecepatan
    I = momen inersia
    w = kecepatan sudut


  2. ENERGI POTENSIAL (Ep)

    Ep = m g h

    h = tinggi benda terhadap tanah


  3. ENERGI MEKANIK (EM)

    EM = Ek + Ep

    Nilai EM selalu tetap/sama pada setiap titik di dalam lintasan suatu benda.

Pemecahan soal fisika, khususnya dalam mekanika, pada umumnya didasarkan pada HUKUM KEKEKALAN ENERGI, yaitu energi selalu tetap tetapi bentuknya bisa berubah; artinya jika ada bentuk energi yang hilang harus ada energi bentuk lain yang timbul, yang besarnya sama dengan energi yang hilang tersebut.
Ek + Ep = EM = tetap
Ek1 + Ep1 = Ek2 + Ep2

PRINSIP USAHA-ENERGI

Jika pada peninjauan suatu soal, terjadi perubahan kecepatan akibat gaya yang bekerja pada benda sepanjang jarak yang ditempuhnya, maka prinsip usaha-energi berperan penting dalam penyelesaian soal tersebut

W tot = DEk      ®  S F.S = Ek akhir - Ek awal
W tot = jumlah aljabar dari usaha oleh masing-masing gaya
        = W1 + W2 + W3 + .......

D Ek = perubahan energi kinetik = Ek akhir - Ek awal

ENERGI POTENSIAL PEGAS (Ep)
Ep = 1/2 k D x2 = 1/2 Fp Dx
Fp = - k Dx
Dx = regangan pegas
k = konstanta pegas
Fp = gaya pegas

Tanda minus (-) menyatakan bahwa arah gaya Fp berlawanan arah dengan arah regangan x.
2 buah pegas dengan konstanta K1 dan K2 disusun secara seri dan paralel:
seri paralel
    1      =   1   +   1 
  Ktot       K      K2
 Ktot = K1 + K2
Note: Energi potensial tergantung tinggi benda dari permukaan bumi. Bila jarak benda jauh lebih kecil dari jari-jari bumi, maka permukaan bumi sebagai acuan pengukuran. Bila jarak benda jauh lebih besar atau sama dengan jari-jari bumi, make pusat bumi sebagai acuan.

Contoh:
1. Sebuah palu bermassa 2 kg berkecepatan 20 m/det. menghantam sebuah paku, sehingga paku itu masuk sedalam 5 cm ke dalam kayu. Berapa besar gaya tahanan yang disebabkan kayu ?
Jawab:
Karena paku mengalami perubahan kecepatan gerak sampai berhenti di dalam kayu, make kita gunakan prinsip Usaha-Energi:
F. S = Ek akhir - Ek awal
F . 0.05 = 0 - 1/2 . 2(20)2
F = - 400 / 0.05 = -8000 N
(Tanda (-) menyatakan bahwa arah gaya tahanan kayu melawan arah gerak paku ).
2. Benda 3 kg bergerak dengan kecepatan awal 10 m/s pada sebuah bidang datar kasar. Gaya sebesar 20Ö5 N bekerja pada benda itu searah dengan geraknya dan membentuk sudut dengan bidang datar (tg a = 0.5), sehingga benda mendapat tambahan energi 150 joule selama menempuh jarak 4m.
Hitunglah koefisien gesek bidang datar tersebut ?

Jawab:
Uraikan gaya yang bekerja pada benda:
Fx = F cos a = 20Ö5 = 40 N
Fy = F sin a = 20Ö5 . 1Ö5 = 20 N
S Fy = 0 (benda tidak bergerak pada arah y)
Fy + N = w ®  N = 30 - 20 = 10 N
Gunakan prinsip Usaha-Energi
S Fx . S = Ek 
(40 - f) 4 = 150 ®  f = 2.5 N
3. Sebuah pegas agar bertambah panjang sebesar 0.25 m membutuhkan gaya sebesar 18 Newton. Tentukan konstanta pegas dan energi potensial pegas !
Jawab:
Dari rumus gaya pegas kita dapat menghitung konstanta pegas:
Fp = - k D®  k = Fp /Dx = 18/0.25 = 72 N/m
Energi potensial pegas:
Ep = 1/2 k (D x)2 = 1/2 . 72 (0.25)2 = 2.25 Joule




4.Pusat Massa Dan Titik Berat
Fisika Kelas 1 > Statika
272

STATIKA adalah ilmu kesetimbangan yang menyelidiki syarat-syarat gaya yang bekerja pada sebuah benda/titik materi agar benda/titik materi tersebut setimbang.

PUSAT MASSA DAN TITIK BERAT

Pusat massa dan titik berat suatu benda memiliki pengertian yang sama, yaitu suatu titik tempat berpusatnya massa/berat dari benda tersebut. Perbedaannya adalah letak pusat massa suatu benda tidak dipengaruhi oleh medan gravitasi, sehingga letaknya tidak selalu berhimpit dengan letak titik beratnya.

1. PUSAT MASSA
Koordinat pusat massa dari benda-benda diskrit, dengan massa masing-masing M1, M2,....... , Mi ; yang terletak pada koordinat (x1,y1), (x2,y2),........, (xi,yi) adalah:
X = (å Mi . Xi)/(Mi)
Y = (å Mi . Yi)/(Mi)
2. TITIK BERAT (X,Y)
Koordinat titik berat suatu sistem benda dengan berat masing-masing W1, W2, ........., Wi ; yang terletak pada koordinat (x1,y1), (x2,y2), ............, (xi,yi) adalah:
X = (å Wi . Xi)/(Wi)
Y = (å Wi . Yi)/(Wi)
LETAK/POSISI TITIK BERAT
  1. Terletak pada perpotongan diagonal ruang untuk benda homogen berbentuk teratur.
  2. Terletak pada perpotongan kedua garis vertikal untuk benda sembarang.
  3. Bisa terletak di dalam atau diluar bendanya tergantung pada homogenitas dan bentuknya.
TITIK BERAT BEBERAPA BENDA


Nama
Letak Titik Berat
Keterangan

Garis lurus yo = 1/2 AB z = di tengah-tengah AB

Busur lingkaran yo = AB/AB . R AB = tali busur
AB = busur AB
R = jari-jari lingkaran

Busur setengah lingkaran yo = 2.R/p R = jari-jari lingkaran

Juring lingkaran yo = AB/AB.2/3.R AB = tali busur
AB = busur AB
R = jari-jari lingkaran

Setengah lingkaran yo = 4.R/3 p R = jari-jari lingkaran

Selimut setengah bola yo = 1/2 R R = jari-jari lingkaran

Selimut limas yo = 1/3 t t = tinggi limas

Selimut kerucut yo = 1/3 t t = tinggi kerucut

Setengah bola yo = 3/8 R R = jari-jari bola
Limas yo = 1/4 t t = tinggi limas
Kerucut yo = 1/4 t t = tinggi kerucut

Dalam menyelesaikan persoalan titik berat benda, terlebih dahulu bendanya dibagi-bagi sesuai dengan bentuk benda khusus yang sudah diketahui letak titik beratnya, kemudian baru diselesaikan dengan rumusan yang ada.
Contoh:
Dua silinder homogen disusun seporos dengan panjang dan massanya masing-masing: l1 = 5 cm ; m1 = 6 kg ; l2 = 10 cm ; m2 = 4 kg.
Tentukan letak titik berat sistem silinder tersebut !

Jawab:
Kita ambil ujung kiri sebagai acuan, maka:
x1 = 0.5 . l1 = 2.5 cm
x2 = l2 + 0.5 . l1 = 5 + 5 = 10 cm

X = (å mi . xi)/(mi)
X = (m1.x1)
+ (m1.x1)/(m1 + m2)
X = (6 . 2.5 + 4 . 10)/(6 + 4)
X = (15 + 40)/(10) = 5.5 cm

Jadi titik beratnya terletak 5.5 cm di kanan ujung m1



5.Momentum

Dalam fisika, momentum adalah besaran yang berhubungan dengan kecepatan dan massa suatu benda.

Momentum dalam mekanika klasik

Dalam mekanika klasik, momentum (dilambangkan dengan P) didefinisikan sebagai hasil perkalian dari massa dan kecepatan, sehingga menghasilkan vektor.
Momentum suatu benda (P) yang bermassa m dan bergerak dengan kecepatan v didefinisikan sebagai ::
\mathbf{P}= m \mathbf{v}\,\!
Massa merupakan besaran skalar, sedangkan kecepatan merupakan besaran vektor. Perkalian antara besaran skalar dengan besaran vektor akan menghasilkan besaran vektor. Jadi, momentum merupakan besaran vektor. Momentum sebuah partikel dapat dipandang sebagai ukuran kesulitan untuk mendiamkan benda. Sebagai contoh, sebuah truk berat mempunyai momentum yang lebih besar dibandingkan mobil yang ringan yang bergerak dengan kelajuan yang sama. Gaya yang lebih besar dibutuhkan untuk menghentikan truk tersebut dibandingkan dengan mobil yang ringan dalam waktu tertentu. (Besaran mv kadang-kadang dinyatakan sebagai momentum linier partikel untuk membedakannya dari momentum angular).

 Hukum Kekekalan Momentum

Sama seperti energi, dalam kondisi tertentu, momentum suatu sistem akan kekal atau tidak berubah. Untuk memberikan pemahaman mengenai hal tersebut, maka akan digunakan konsep Pusat Massa. Misal jika ada sebuah sistem yang terdiri dari beberapa benda dengan massa \mathbf{m_1}, \mathbf{m_2}, \mathbf{.....}. bergerak dengan kecepatan masing-masing adalah \mathbf{v_1}, \mathbf{v_2}, \mathbf{.....}., maka kecepatan pusat massa sistem tersebut adalah :
\mathbf{v_{cm}} = { \displaystyle\sum m_i \mathbf{v}_i \over \displaystyle\sum m_i }.
Dan jika sistem tersebut bergerak dengan dipercepat dengan percepatan masing-masing adalah \mathbf{a_1}, \mathbf{a_2}, \mathbf{.....}., maka percepatan pusat massa sistem tersebut adalah :
\mathbf{a_{cm}} = { \displaystyle\sum m_i \mathbf{a}_i \over \displaystyle\sum m_i }.
Sekarang jika benda-benda tersebut masing-masing diberi gaya \mathbf{F_1}, \mathbf{F_2}, \mathbf{.....}., maka benda-benda tersebut masing-masing memiliki percepatan :
\mathbf{a_{i}} = { \mathbf{F_i} \over m_i }.
Sehingga percepatan pusat massa sistem dapat dinyatakan sebagai :
\mathbf{a_{cm}} = { \displaystyle\sum \mathbf{F}_i \over \displaystyle\sum m_i }.
Notasi \displaystyle\sum \mathbf{F}_i. merupakan notasi yang menyatakan resultan gaya yang bekerja pada sistem tersebut. Jika resultan gaya yang bekerja pada sistem bernilai nol (\displaystyle\sum \mathbf{F}_i = 0), maka sistem tersebut tidak dipercepat (\displaystyle\sum \mathbf{a}_i = 0). Jika sistem tidak dipercepat, artinya sistem tersebut kecepatan pusat massa sistem tersebut konstan (\mathbf{v_{cm}} = constant). Jadi dapat disimpulkan bahwa :
\displaystyle\sum m_i \mathbf{v}_i = constant.
Notasi di atas merupakan notasi dari hukum kekekalan momentum. Jadi total momentum suatu sistem akan selalu kekal hanya jika resultan gaya yang bekerja pada sistem tersebut bernilai nol.


Momentum sudut

Gyroscop tetap bisa berdiri tegak saat berputar akibat adanya momentum sudut
Dalam fisika, momentum sudut secara intuitif mengukur berapa besar momentum linear yang diarahkan di sekitar suatu titik tertentu yang disebut titik pusat; momen dari momentum.
Rumus matematika sederhana untuk momentum sudut dari suatu partikel terhadap titik pusat tertentu adalah:
L = r×p = \boldsymbol{r} \times m\boldsymbol{v}
di mana L adalah momentum sudut dari partikel, r adalah posisi dari partikel yang dinyatakan sebagai vektor perpindahan dari titik pusat, dan p adalah momentum linear dari partikel itu.

6.Momentum Dan Impuls
Fisika Kelas 1 > Dinamika
269
1. MOMENTUM LINIER (p)
MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.
p = m v
Momentum merupakan besaran vektor, dengan arah p = arah v
2. MOMENTUM ANGULER (L)
MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.
L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.
Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:
       t1
I = ò F dt = F (t2 - t1)
     t2

I = Perubahan momentum
Ft = m v akhir - m v awal


Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku.

Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t.